Q-learning is a popular reinforcement learning algorithm used to make decisions in an environment. It enables an agent to learn optimal actions by iteratively updating its Q-values, which represent the expected rewards for taking certain actions in specific states. Here is a step-by-step implementation of Q-learning using Python: Image by Author 1. Import the necessary libraries: import numpy as np import random 2. Define the environment: # Define the environment env = np.array([[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
We’re tech content obsessed. It’s all we do. As a practitioner-led agency, we know how to vet the talent needed to create expertly written content that we stand behind. We know tech audiences, because we are tech audiences. In here, we show some of our content, to get more content that is more suitable to your brand, product, or service please contact us.