Training a Convolutional Neural Network (CNN) for performing medical images/ imaging tasks has always been done using Transfer learning as any other natural image classification task (cats Vs dogs). In other words, to build a medical image classification artificial intelligence model (disease detection, cancer malignancy identification, chest x-ray anomaly detection) we still fine-tune a pre-trained model such as InceptionV3 network, which was trained originally on ImageNet, on another medical dataset. So the issue here is we are fine-tuning a model, for performing a medical image classification task, that was originally trained on natural images like ImageNet . But, have you asked yourselves what can happen if we train the original model on medical images dataset similar to ImageNet, and then we fine-tune it on a specific dataset when needed (also medical)!. RadImageNet The answer to the question above is that pretraining and fine-tuning using medical images instead of ImageNet can
We’re tech content obsessed. It’s all we do. As a practitioner-led agency, we know how to vet the talent needed to create expertly written content that we stand behind. We know tech audiences, because we are tech audiences. In here, we show some of our content, to get more content that is more suitable to your brand, product, or service please contact us.